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Abstract

This is a summary of my talk at Studio Phones seminar on February 22nd, 2012.

In this talk, I would like to explain major roles in homotopy theory played by simplicial and cellular
structures. Homotopy theory is a theory of deformations. According to Gel′fand1, therefore, homotopy
theory is one of the most fundamental fields in mathematics. Homotopy theory is, however, usually re-
garded as a part of topology. What is topology? From my viewpoint, topology has the following three
aspects:

1. treat continuous deformations seriously.

2. use invariants heavily.

3. provide global viewpoints.

From this point of view, the first and the third play important roles in homotopy theory. Let me explain
how.

1 From Simplicial Complexes to Simplicial Sets and CW complexes
In an attempt to answer Heegaard's criticism on his ``Analysis Situs'' [Poi96], Poincaré decided to use
triangulations of manifolds. The target manifold is cut into pieces by smooth ``surfaces''. Later people
decided to abandon the smoothness requirement. Each piece is supposed to be homoeomorphic to an
interior of a convex polytope.

According to Dieudonné's book on the history of algebraic and differential topology [Die89], it was
Lefschetz [Lef08] who defined the concept which is now called Euclidean simplicial complex.

Definition 1.1. A (Euclidean) polyhedral complex in Rn is a subspace K of Rn equipped with a family
of a finitely many number of maps {φi : Pi −→ K | i = 1, · · · , n} satisfying the following conditions:

1. Each Pi is a convex polytope;

2. Each φi is an affine equivalence onto its image;

3. K =
∪n

i=1 φi(Pi);

4. For i ̸= j, φi(Pi) ∩ φj(Pj) is a proper face of φi(Pi) and φj(Pj).

Pi's or φi(Pi) are called generating polytopes .
When all generating polytopes are simplices, (K, {φi}) is called a Euclidean simplicial complex.

1See Introduction of the draft of the book by Kontsevich and Soibelman on deformation theory.
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The notion of Euclidean simplicial (polyhedral) complexes evolved into three structures: abstract sim-
plicial complex, ordered simplicial complex, and cell complex.

Abstract simplicial complexes are one of the fundamental objects of study in modern combinatorics.

Definition 1.2. An abstract simplicial complex on the vertex set S is a collection X of finite subsets of S,

X ⊂ 2S ,

satisfying the following condition: if σ ∈ X , τ ⊂ σ, then τ ∈ X . We usually assume X is essential, i.e.,∪
σ∈X

σ = S.

An element in X is called a face or a simplex of X . When the cardinality of a simplex σ ∈ X is n+1,
we say σ is an n-dimensional simplex.

I do not know who introduced the current definition of abstract simplicial complexes. One of the
key facts which make abstract simplicial complexes so useful in combinatorics can be illustrated by the
following diagram:

ASC Posets

OSC,

//F

���
� �
� �
��
� �

Sd

����
��
��
��
��
��

∆
(1)

where ASC, OSC, and Posets are categories of abstract simplicial complexes, of ordered simplicial com-
plexes, and of posets, respectively. Functors F , Sd, and ∆ are the face poset functor, the barycentric
subdivision functor, and the order complex functor, respectively.

Definition 1.3. An ordered (abstract) simplicial complex is an abstract simplicial complex K whose
vertex set S is partially ordered and the induced ordering on each simplex is a total order.

Definition 1.4. The set of all faces of an abstract simplicial complex K is denoted by F (K). It is regarded
as a poset under the inclusions and is called the face poset of K.

Definition 1.5. For a poset P , define an ordered simplicial complex ∆(P ) with vertex set P by

∆(P ) = {σ ⊂ P | σ is totally ordered.} .

This is called the order complex of P .

Definition 1.6. For an abstract simplicial complex K, the ordered simplicial complex ∆(F (K)) is called
the barycentric subdivision and is denoted by Sd(K).

It was Henry Whitehead [Whi49] who introduced the closure finiteness and weak topology conditions
on cell complexes and defined CW complexes, which generalize Euclidean polyhedral complexes.

Definition 1.7. An n-cell in a topological space X is a subset e ⊂ X equipped with a continuous map
φ : Dn → e whose restriction φ|Int(Dn) is a homeomorphism onto e.

A cell complex is a topological space X together with a family of cells {φλ : Dnλ → eλ}λ∈Λ with
the following properties:

1. X =
∪

λ∈Λ eλ.
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2. For an n-cell eλ, ∂eλ = eλ − eλ is a union of cells of dimension ≤ n− 1.

A cell complex X is called a CW complex if it satisfies the following two conditions:

1. it is closure finite i.e. eλ is covered by a finite number of cells for each λ, and

2. it has the weak topology with respect to the covering {eλ}λ∈Λ.

The triangle (1) does not generalize to CW complexes. We obtain, however, the following diagram by
restricting our attention to regular CW complexes:

CWreg Posets

CWreg OSC

//F

���
��
� �
��
� �

Sd

���
� �
� �
��
� �
�

∆

���
� �
� �
��
� �
�

oo
|−|,

where CWreg is the category of regular CW complexes and | − | is the geometric realization functor.

Definition 1.8. A cell complex X is said to be regular if φλ : Dnλ → eλ is a homeomorphism.

Definition 1.9. For an ordered simplicial complex K, define a topological space |K| by

|K| =

(⨿
n

Kn ×∆n

)/
∼
,

where ∆n is the standard n-simplex and ∼ is the equivalence relation generated by

(di(x), s) ∼ (x, di(s)),

where di is the operation which removes the i-th vertex2 and di : ∆n−1 ↪→ ∆n is the inclusion onto the
face opposite to the i-th vertex. The space |K| is called the geometric realization of K.

Definition 1.10. For a regular cell complex X , the cell complex |∆(F (X))| is called the barycentric
subdivision of X and is denoted by Sd(X).

Another importance of the concept of ordered simplicial complex is that it was the origin of simplicial
sets introduced by Kan [Kan57] under the name ``semi-simplicial complexes''.

Definition 1.11. A simplicial set X consists of a sequence of sets

X0, X1, . . .

and maps

di : Xn+1 −→ Xn (0 ≤ i ≤ n+ 1)

si : Xn−1 −→ Xn (0 ≤ i ≤ n− 1)

satisfying the following relations:

di ◦ dj = dj−1 ◦ di, i < j

di ◦ sj = sj−1 ◦ di, i < j

dj ◦ sj = 1 = dj+1 ◦ sj
di ◦ sj = sj ◦ di−1, i > j + 1

si ◦ sj = sj+1 ◦ si, i ≤ j.
2Note that since X is ordered the vertices of an n-dimensional simplex is numbered from 0 to n.
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Before this work, Kan also investigated a possibility of using cubical complexes in [Kan55]. Simplicial
sets, however, have the following simple characterization.

Definition 1.12. The category of isomorphism classes of finite totally ordered sets and order preserving
maps is denoted by ∆.

Proposition 1.13. The category of simplicial sets is isomorphic to category of functors Funct(∆op, Sets).
In other words, the category of simplicial sets is the category of presheaves on ∆ with values in Sets.
Definition 1.14. The category of simplicial sets is denoted by Sets∆

op
.

We have seen the following developement of simplicial and cellular structures so far:
..Euclidean simplicial (polyhedral) complex

.Abstract simplicial complex .Ordered simplicial complex

.CW complex

.Simplicial set.Cubical set

2 Simplicial and Cellular Structures in Homotopy Theory
It was Kan who first tried to develop general ``homotopy theory'' based on these ``well-behaved spaces''.
Kan first tried to develop homotopy theory based on cubical complexes in a series of papers [Kan55;
Kan56a; Kan56b; Kan56c]. Then developed an abstract homotopy theory based on simplicial sets in
[Kan57].

The concept of ``abstract homotopy theory'' was made explicit by Quillen in [Qui67] as model struc-
tures. The following simplified definition can be found in a paper [JT07] by Joyal and Tierney.

Definition 2.1. Let C be a category closed under finite limits and colimits. A model structure on C is a
triple (C,W,F ) of subcategories satisfying the following conditions:

1. W satisfies the ``two-out-of-three'' property.

2. The pair (C ∩W,F ) is a weak factorization system.

3. The pair (C,W ∩ F ) is a weak factorization system.

A category with a model structure is called a model category. Morphisms in C ∩W and W ∩ F are
called acyclic cofibrations and acyclic fibrations, respectively.

Weak factorization systems are characterized by lifting properties.

Definition 2.2. Let C be a category and consider a diagram

a x

b y.

//

��
u

��
f

??
∃

//

We say f has the right lifting property with respect to u if, for any commutative square as above, there
exists a morphism b→ x filling in the diagram. In this case we also say that u has the left lifting property
with respect to f .
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Definition 2.3. Let C be a category. A weak factorization system is a pair of subcategories (A,B) satis-
fying the following conditions:

1. Any morphism f in C can be factored as f = p ◦ i with i in A and p in B, i.e. A has (A,B)-
factorizations.

2. A morphism f has the right lifting property with respect to every morphism in A if and only if f
belongs to B.

3. A morphism g has the left lifting property with respect to every morphism in B if and only if f
belongs to A.

Remark 2.4. Hovey requires that the weak factorizations in his definition of model category to be func-
torial. There are, however, examples of model categories whose weak factorizations are not functorial.
See Chorny's paper [Cho03].

One of the most important discovery of Henry Whitehead is that CW complexes behave extremely well
with respect to homotopy. For example, any pair (X,A) of a CW complex X and its subcomplex A has
the homotopy extension property (HEP). On the other hand, covering homotopy property of fiber bundles
evolved into the definition of fibrations by Hurewicz [Hur55] and Serre [Ser51]. Quillen's definition of
model structure is based on these structures.

Quillen constructed model structures on the category Sets∆
op

of simplicial sets and the category Spaces
of topological spaces. He invented so-called the small object argument for this purpose. The point is
that the model structures on these categories are generated by ``cellular structures''. We use transfinite
compositions to define ``cell complexes'' based on a class of morphisms I .

Definition 2.5. Let C be a category and I be a small subcategory of C closed under colimits. Define the
class I-cell of relative I-cell complexes in C by a transfinite induction as follows: Morphisms in I belong
to I-cell. A morphism f : A→ B is in I-cell if there exists an ordinal λ and a colimit-preseving functor

X : λ −→ C

satisfying the following properties:

1. f is the composition of X .

2. For each β with β + 1 < λ, there is a pushout square

Cβ Xβ

Dβ Xβ+1

//

���
� �
� �
� �
�

gβ

���
� �
��
� �
�

//

such that gβ ∈ I1.

We say an object A in C is an I-cell complex if the canonical morphism

∅ −→ A

belongs to I-cell, where ∅ is the initial object in C.

Definition 2.6. Let C be a category closed under small colimits and κ be a cardinal.
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1. An object x is κ-small relative to a subcategory D if for every regular cardinal λ ≥ κ and every
λ-sequence

a0 → a1 → a2 → · · · → aβ → · · ·

with β < λ in C such that aβ → aβ+1 is in D for every cardinal β satisfying β + 1 < λ, the map
of sets

colim
β<λ

C(x, aβ) −→ C

(
x, colim

β<λ
aβ

)
is an isomorphism.

2. An object x is κ-small relative to a class of morphisms I if it is κ-small relative to the subcategory
of relative I-cell complexes.

An object x is said to be small relative to I if x is κ-small relative to I for some cardinal κ.

There is a canonical way of producing a weak factorization system from such a class of morphisms or
a subcategory I .

Theorem 2.7 (The Small Object Argument). Let C be a category closed under arbitrary small colimits
and I be a small subcategory. Suppose the domains of morphisms in I are small relative to I . Then there
exists a functorial weak factorization system (γ, δ) on C such that γ(f) is in I-cell and δ(f) is in I-inj for
any morphism f in C.

The class I-inj used in the above theorem is defined as follows.

Definition 2.8. Let I be a class of morphisms (i.e. a subcategory) in a category C. A morphism f is

1. I-injective if it has the right lifting property with respect to morphisms in I ,

2. I-projective if it has the left lifting property with respect to morphisms in I ,

3. I-cofibration if it has the left lifting property with respect to every I-injective morphism,

4. I-fibration if it has the right lifting property with respect to every I-projective morphism.

The subcategories of I-injectives, I-projectives, I-cofibrations, and I-fibrations are denoted by I-inj,
I-proj, I-cof, and I-fib, respectively.

Definition 2.9. Let C be a category. We say a class of morphisms I permits the small object argument if
the domains of elements in I are small relative to I .

Definition 2.10. A cofibrantly generated model category is a model categoryC equipped with two classes
of morphisms I and J satisfying the following conditions:

1. I permits the small object argument.

2. A morphism is a acyclic fibration if and only if it has the right lifting property with respect to all
elements in I .

3. J permits the small object argument.

4. A morphism is a fibration if and only if it has the right lifting property with respect to all elements
of J .

Elements in I and J are called generating cofibrations and generating acyclic cofibrations, respec-
tively.
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Theorem 2.11. Let C be a category closed under small limits and colimits and W be a subcategory that
is closed under retracts and satisfies the two-out-of-three axiom.

Suppose that I and J are classes of morphisms of C satisfying the following properties:

1. I and J permit the small object argument.

2. J−cof ⊂ I−cof ∩W .

3. I−inj ⊂ J−inj ∩W .

4. One of the following conditions holds:

(a) I−cof ∩W ⊂ J−cof,
(b) J−inj ∩W ⊂ I−inj.

Then there exists a cofibrantly generated model structure on C in which W is the subcategory of weak
equivalences, I is the class of generating cofibrations, and J is the class of generating acyclic cofibrations.

In a cofibrantly generated model category, ``cells'' are generators of cofibrations. In particular, in the
Quillen model structure of topological spaces, cofibrations are retracts of relative CW complexes.

Quillen also proved that, under his model structures, the geometric realization functor | − | and the
singular simplicial set functor S define a Quillen equivalence

| − | : Sets∆
op
←→ Spaces : S.

Definition 2.12. Let C and D be model categories.

• We say a functor f : C →D is a left Quillen functor if f is a left adjoint and preserves cofibrations
and trivial cofibrations.

• Dually, we say a functor g : D → C is a right Quillen functor if g is a right adjoint and preserves
fibrations and trivial fibrations.

• A Quillen adjunction is an adjunction

φ : D(f(x), y)
∼=−→ C(x, g(y))

such that f is a left Quillen functor. We denote a Quillen adjunction by

(f, g, φ) : C −→D.

• We say a Quillen adjunction
(f, g, φ) : C −→D

is a Quillen equivalence if, for all cofibrant x in C and fibrant y in D, we have

WD ∩D(f(x), y) = φ−1(WC ∩C(x, g(y))).

Theorem 2.13. The geometric realization and the singular simplicial set functors define a Quillen equiv-
alence between Sets∆

op
and Spaces.
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In particular, the geometric realization |X| of any simplicial set X has a canonical structure of CW
complex and we have a weak homotopy equivalence

|S(Y )|
≃
w−→ Y

for any topological space Y . In other words, any topological space can be replaced by a CW complex up
to a weak homotopy equivalence.

After Quillen's discovery, model categories have been used in many fields. We can refine classical
homological algebra based on triangulated categories by using stable model structures.

Why is the concept of model categories so useful?

One of the answers to this question is the following.

Fact 2.14. Triangulated categories suffer the well-known defect that the cone construcion and other
``colimit-type'' constructions are not functorial. By lifting to model categories, we may define homotopy
colimits of any diagrams under a mild condition.

One of the conditions on a model category under which we may perform homotopy limits and colimits
is the existence of a simplicial enrichment. This is one of main topics in Hirschhorn's book [Hir03].
It should be also noted that triangulated categories are often constructed as a homotopy category of a
category with richer structures such as (stable) dg categories, A∞-categories, and model categories.

Dwyer and Kan [DK80c; DK80a; DK80b] found that simplicial structures can be used to extend the
construction of the homotopy category of a model category to categories with a designated class of ``weak
equivalences''.

Theorem 2.15. Given a category C and a subcategory W with C0 = W0, there exists a simplicial
category LWC with

π0(LWC(x, y)) ∼= C[W−1](x, y).

Recall that, for a model category C, we define the homotopy category Ho(C) by formaly inverting
the class W of weak equivalences, i.e. Ho(C) = C[W−1]. This naive definition, however, suffers from a
set theoretical difficulty. The discovery of Dwyer and Kan suggests the usefulness of simplicial structure
in localizations of categories.

An interesting and important fact is that the existence of simplicial enrichment also leads to another
approach to homotopy categories, i.e. the theory of (∞, 1)-categories.

3 Simplicial and Cellular Structures in Higher Category Theory
Definition 3.1. A simplicial category is a category enriched over the category Sets∆

op
. The category of

simplicial categories is denoted by Sets∆
op

-Cats.

The work of Dwyer and Kan suggests that the category Sets∆
op

-Cats can be regarded as the category
of categories whose homotopy categories can be defined. It turns out there are several other candidates
for such models for ``homotopy theory of homotopy theories''.

One of them also originates in an old work of Kan. Recall that an object x in a model category C is
said to be fibrant if the canonical morphism x→ ∗ to the terminal object is a fibration.

Definition 3.2. Fibrant objects in Sets∆
op

are called Kan complexes.
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Proposition 3.3. A simplicial set X is a Kan complex if and only if, for n ≥ 0, 0 ≤ i ≤ n, and any
morphism of simplicial sets

φ : Λn
i −→ X,

there exists an extension φ̃ : ∆n → X , where Λn
i is the simplicial subset of ∆n generated by all faces but

the i-th one.

The nerve of a small category has an analogous property.

Proposition 3.4. For a simplicial set K, the following conditions are equivalent:

1. There exists a small category X with K ∼= N(X).

2. For any n ≥ 0, 0 < i < n and a morphism φ : Λi → K, there exists a unique extension
φ̃ : ∆n → K of φ.

As a class containing these two classes of simplicial sets, Boardman and Vogt [BV73] introduced and
studied simplicial sets satisfying the restricted Kan condition, called weak Kan complexes or quasicate-
gories these days.

Definition 3.5. A quasicategory is a simplicial set K satisfying the condition that, for any n ≥ 0, 0 <
i < n and a morphism φ : Λi → K, there exists an extension φ̃ : ∆n → K of φ.

It was Joyal [Joy02] who first formulated the theory of quasicategories. Then Lurie [Lur09a] used it
as a model for higher categories, more precisely categories whose higher morphisms are invertible.

It is well-known that the nerve functor

N : Cats −→ Sets∆
op

is an embedding. By Proposition 3.4, the nerve functor embeds Cats into the category QCats of quais-
categories. It is also well-known that the nerve functor has a left adjoint

τ1 : Sets∆
op
−→ Cats,

which can be used to define the homotopy category construction for quasicategories.

Definition 3.6. The restriction of τ1 to QCats is denoted by

h : QCats −→ Cats .

For a quaiscategory X , h(X) is called the homotopy category of X .

Thus the category QCats of quasicategories is another model for the category of categories whose ho-
motopy categories can be defined. Lurie found quasicategories are useful for developing derived algebraic
geometry and other ``higher geometries and algebras'' [Lurc; Lurb; Lura; Lurd; Lure; Lur09b].

It turns out there are many more models for homotopy theories of homotopy theories other than sim-
plicial categories and quasicategories:

• Segal categories. [HS]

• complete Segal spaces. [Rez01]

• relative categories. [BK]

It is known that all these theories are equivalent to each other [Ber10]. And simplicial structures play
essential roles in all of these theories.
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